1 intro

I’ll use the same notation as this paper| by Bonato, Lehner, Marbach, and Nir
as closely as I can. That means that for any tree T, the localization number of
T is expressed with ((7'). There are also a few precisely defined trees. There’s
T, which looks like this:

As well as T7°, which looks like this:

It is already known that any tree containing T or T7° has localization number
2. In fact, every finite tree with localization number 2 contains an instance of
T. However, it is not clear if every locally finite tree with localization number
2 contains a tree in {T",T7°}. The exact question posed is:

Question 1. An interesting problem is determining the minimal locally finite
trees with countably (or even finitely) many ends and localization number 2.
We think that examples other than T and T7° exist, but it is open whether
there exists an infinite family of minimal locally finite trees with two ends and
localization number 2.

Or, rephrased

Question 2. Does there exist a tree T with ((T) = 2 that does not contain T
or T ? Moreover, do such trees with 2 ends exist?
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It’s nice that the scope of the question is limited with that second question. I'll
build larger and larger trees that do not contain 7" or T7°, and see when we get
a localization number above 1.

Let T be a 2-ended tree that does not contain 77 or T. Because T does
not contain 77°, it must have a double ray with at least one vertex of degree
2. Label that vertex with degree 2 (0,0), and label the other points along that
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double ray with (n,0). For any vertex V on T that is not on the double ray,
label V' with n,m if V' is closer to (n,0) than any other point on the double ray,
and V is a distance of m from (n,0).

For any n # 0, let N be a finite subtree rooted at (n,0). If the cop ever
knows that the robber is on N, then the robber can be found by the same method
described in this paper| by Seager. Therefore, I have the initial impression that
a 2-ended graph with length 2 paths on each vertex (n,0) with n # 0, as shown.

As defined, T has a localization number 1.

Lemma 1. Let T be the tree with vertices uniquely labeled (n,m), with n € Z
and m € {0,1,2}, except for (0,1) and (0,2), where (n,0) shares an edge with
(n+1,0) for each value of n and (n,1) shares edges with (n,0) and (n,2). If T
has no other edges or vertices, then ((T) =1

Proof. For this proof, I'll first show that the robber can be restricted to the
vertices {(n,0),(n + 1,1),(n + 2,2)} for positive n. Then, I'll show that this
can be pushed to {(0,0),(1,1),(2,2)}. Finally, from there, the cop may locate

the robber.
First, the cop may probe at (0,0) and receive a distance from the robber of

d. The robber set at that point is:
{(=d,0),(—d+1,1),(—=d+2,2),(d —2,2),(d —1,1),(d,0)}

Next, the cop may probe at (—d — 1,0). The possible distances from that
point to points in the extended robber set is:

distance from (—d — 1,0) new robber set
0 (—d—1,0)
1 (—d,0)
2 (—d, 1), ( d+1,0)
3 (=d,2),(=d+ 1,1),(=d +2,0)
2d ( -2, ),( —1,0)
2d+1 (d-2,2),(d—-1,1),(d,0)
2d+2 (d— )7(,1) (d+1,0)
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If the second probe gives a distance of 0 or 1, the robber is found instantly. If
the second probe gives a distance of 2 or 3, then the robber has been restricted
to vertices of the form {(—n,0),(—n — 1,1),(n — 2,2)}, which is identical to
{(n,0),(n + 1,1),(n + 2,2)} up to sign. If the second probe gives a distance
above 3, then a third probe is required.

If a third probe is required, we have so far restricted the robber to one of
three sets, whose union is:

{(d—2,1),(d—1,0),(d—2,2),(d—1,1),(d,0), (d — 1,2), (d, 1), (d +1,0)}

Therefore, let the cop put the third probe at (d + 2,0), giving the following

robber sets:

distance from (—d — 1,0)

new robber set

0 (d+2,0)

1 (d+1,0)

2 (d,0),(d+1,1)

3 (d—1,0),(d,1),(d+1,2)
4 (d—2,0),(d—1,1),(d,2)

Regardless of what distance is found in the third probe, the robber is re-

stricted to a set of vertices {(n,0),(n + 1,1),(n + 2,2)}.

Next, the cop may

push the robber to {(n —1,0), (n,1),(n+1,2)} using the following sequence of

probes:
] Robber set \ Probe \ d=1 \ d=2 \ d=3 \ d=4
(n ?T)LJ(F”;FQ; D21 | 0422 | 0+1,0) | 0,0, 0+1,1) | " ?nlﬂ” (2” D
(n,0),(n+1,1) | (n+1,2) | (n+1,1) | (n+1,0) (n,0) (n—1,0),(n,1)
Once the cop has pushed the robber to {(0,0), (1,1),(2,2)}, the robber can
be found with the following probing strategy:
] Robber set \ Probe \ d=1 \ d=2 \ d=3 \ d=14
(0,0),(1,1),(2,2) | (0,0) | (=1,0),(1,0) (1,1) (1,2),(2,1) (2,2)
(1,2),(2,1) (1,1) (1,2) (2,1) (2,2)
(-1,0),(1,0) (—2,0) (-1,0) (-1,1),(0,0) (1,0) (1,1),(2,0)
(-1,1),(0,0) (-1,2) (—-1,1), (-1,0) (0,0) (1,0)
(1,1),(2,0) (3,0) (2,0), (2,1),(1,0) (1,1) (1,2)
(2,1),(1,0) (2,2) (2,1), (2,0) (1,0) (0,0),(1,1)
(0,0),(1,1) (1,2) (1,1), (1,0) (0,0) (-1,0)
O




Unfortunately, this proof doesn’t work if the cop never probes vertices off
the double ray. This means that the translation of this proof to versions of T’
with different subtrees coming off the double ray require closer inspection. So
let’s take this same proof concept and expand it to larger trees.
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As promised, I'll extend the previous theorem to a larger tree. Let T be a
2-ended tree with vertices uniquely labelled with (n,m), with n € Z/0 and
m € ZN |0, h] where h is any natural number, as well as a vertex labelled (0, 0).
The tree T' will also contain edges between the vertices (n,0) and (n + 1,0) for
any n, and an edge between vertices (n,m) and (n,m + 1) for any n,m. For
convenience, this is illustrated here:

In other words, each vertex on the double ray has an arbitrarily long path
coming off it. This graph will be shown to have localization number 1 using the
same method used previously.

Lemma 2. The cop is able to restrict the robber to a set of vertices {(n,0), (n+
1,1),(n+2,2)} for positive n.

Proof. The cop may probe first at (0,0), and receive a distance of d. If they
then probe at (—d,0), it will be clear if the robber is located at a vertex with a
positive or negative x-coordinate. Without loss of generality, assume the robber
is determined to lie to the right of (0,0).

The cop will then probe once to the left of the robber, then once to the right.
The cop may probe at (0,0) and receive a distance of d;. The robber set at that
point consists of all vertices (di — ¢,4) where i is a natural number less than h
and dy. The extended robber set consists of the vertices (d; — i + ,14), where
¥ e [-1,0,1].

Next the cop may probe to the right of the robber, specifically at (d; +1,0),
and receive distance do. If do is 0 or odd, the robber is instantly found, so
assume ds is even. If do = 2, then the robber is restricted to {(d; —1,0), (dy, 1),
satisfying the lemma statement. So assume now that do > 4 and that the robber



Figure 1: The situation after the cop gets a distance of d;. Here, the robber set
is colored in red, and the extended robber set is colored in blue.

is restricted to some set of vertices {(n,m),(n + 1,m + 1)}. I'll illustrate the
options for this as well.

1 1]

Figure 2: The situation after the cop gets a distance of ds. Here, the different
robber sets are distinguished by color.

As mentioned, the robber is now restricted to a set of 2 vertices {(n,m), (n+
1,m +1)}. If m > 1, then that set is raised slightly off the double-ray, giving
an extended robber set of {(n,m + ), (n + 1,m + 1 4+ ¢)} for all values of
¥ € [—1,0,1]. The cop will now probe at (n,1)

If m > 1, then probing at (n, 1) instantly reveals the location of the robber,
as shown in the following table:



(a) m>1 (bym=1

Figure 3: The regular and extended robber set for m > 1 and m =1

distance from (n,1) | robber location
m— 2 (n,m—1)
m—1 (n,m)

m (n,m+1)
m+1 (n+1,m)
m+ 2 (n+1,m+2)
m+3 (n+1,m+2)

If m = 1, then the robber is restricted to a pair of vertices labeled (n,1) and
(n+1,2). The cop can either locate the robber or shift the robber to vertices
labeled (n — 1,0) and (n, 1) with the following two moves:

Robber set || (n,1),(n+1,2) (n,0), (n,2)
probe (n,1) (n+1,0)
d=0 (n, 1) (n+1,0)
d=1 (n,0), (n,2) (n,0)
d=2 (n,1),(n—1,0)
d=3 (n+1,1) (n,2)
d=14 (n+1,2) (n,3)
d=5 (n+1,3)
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