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1 Introduction

These are sloppy and casual notes that I’m making to collect my thoughts on
Mosers worm problem. First, here is an important definition:

Definition 1. A set of points (in euclidean 2D space) A accommodates a set
B when there is a set B′ such that B′ ⊆ A, and B′ is congruent to B.

Equivalently, a set of points A accommodates a set B when there is a set A′

such that B ⊆ A′, and A′ is congruent to A.
For these notes, A accommodates B will be notated with B ⊑ A.

From here on out, I might be a little bit looser, and not worry so much about
the idea that S′ is appreciably different from S. Each shapes name might also
be loosely used to apply any translation and rotation of that shape.

Problem 1. What is the smallest convex shape that can accommodate any curve
of length 1?

I have three approaches to this problem I’m considering. I’m going to write
this out in the order they’re occurring to me.

2 Polygonal chains

This problem has been unsolved since 1966. I therefore conclude that it is very
difficult. Here is a slightly simpler problem:

Problem 2. What is the smallest convex shape that can accommodate any
polygonal chain of length 1?

As a matter of fact, I’m confident that this second problem is effectively
equivalent to the first one. I worked on a similar problem to this with my
buddy Emma Joe back in undergrad. So, here’s an even easier version of the
problem:

Problem 3. What is the smallest convex shape that can accommodate any 3-
segment polygonal chain of length 1?
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I try not to look to much at work that’s already been done on a problem
while I’m just beginning to think about it myself, but it looks like

1. None of these problems have been solved (I think :P)

2. Problem 3 has been shown not to imply Problem 4, but Problem 2 does

Okay, from here out, I’m not going to read anything other people have
written on the problem, at least until I feel like I’ve done what I can.

I don’t think it’ll cause any harm to come up with some notation, if it’s just
for my use. Given a set of points S, the convex hull of S will be given by [S].
That seems reasonable, and I don’t foresee that causing confusion.

Okay, let me wave my hands just a little bit. I don’t have a written proof
for this, abut it seems safe to just state.

Observation 1. Given a sets A and B, with A being convex, B ⊑ A if and
only if [B] ⊑ A

This can be proven, but I don’t want to type the proof out right now. Sorry.
The proof is left as an exercise for the reader, i guess.

Okay, so, any shape that accommodates everything has to accommodate
the convex hulls of 3-link polygonal chains. Therefore, let’s start by trying to
accommodate polygonal chains whose convex hulls are rectangles.

Definition 2. Let R be the set of 3-link unit-length polygonal chains, for which
the first and third link have the same length, and all corners are 90◦ clockwise.

Observation 2. The convex hull of any curve in R is a rectangle with length
ℓ and width w, with ℓ+ 2w = 1

So, we want to accommodate all these rectangles. The two hardest shapes
in this set are the square with sides of length 1

3 , and the line of length 1. Here’s
a useful definition we can use:

Definition 3. For short, we’ll refer to the convex hull of the union of a unit-
length line and a square with side length 1

3 as a SLCH, short for “Square-line
convex hull”.

If a SLCH cannot accommodate a distinct, smaller SLCH, we’ll call that a
minimal SLCH.

Definition 4. A shape that can accommodate any unit length curve will be
called a blanket.

Observation 3. Any blanket must accommodate a minimal SLCH.

I’m very interested in figuring out what the smallest minimal SLCH is. We
can start with the square. I’ll include some lines, to make things easier to
understand.

2



Then, the line has to be included. I’ll just drop it down in a way that helps
me make my point.

The convex hull looks like this:
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And we can divide the convex hull into triangles. The altitude of each of
these triangles is given in their color, but darker.

Let’s finish off by labeling some of the points and distances involved.
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Now I can finally make my point! If the endpoints of the line are located
at (x1, y1) and (x2, y2), then there are at most 4 triangles added to the overall
shape (actually, you could have more if the line doesn’t intersect with the square,
but dw about it). If an endpoint of the line ends in one of the areas above or
to the side of the square, one triangle is added, and if it’s in one of the corner
sections, you add two triangles.

If a is an x or y coefficient of an endpoint of the line, then the triangle added
has a base length of 1

3 , and the area A of the triangle added is given by:

A =


−a
6 a < 0
0 0 ≤ a ≤ 1

3
(a− 1

3 )
6 a > 1

3

The two endpoints of the triangle are 1 unit distance apart. Therefore:√
(x1 − x2)

2
+ (y1 − y2)

2
= 1

That piece of this problem about the area being a piecewise thing is a bit of
a disaster though. I’ll give some names to the regions around the square.
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First, I’ll mention a few things.

Statement 1. If one end of the line is inside the square, then the SLCH is not
minimal.

This is because, in any case, you can slide the line deeper into the square to
get a smaller SLCH.

Statement 2. If the line does not pass through the square, then the SLCH is
not minimal.

This is because you could translate either the line or the square towards
the other to get a smaller SLCH. I know that neither of these arguments are
rigorous, but I’ve convinced myself in my paper notes.

Ok, let’s go back to considering what the smallest possible SLCH is. Con-
sidering the possible placement of the line with respect to the square, there are
3 possibilities.

1. (x1, y1), and (x2, y2) are in opposite odd numbered sections.

2. (x1, y1), and (x2, y2) are on opposite even numbered sections.

3. (x1, y1) is in an odd numbered section, and (x2, y2) is in an even numbered
section

Without loss of generality, we may express these three options like this:

1. (x1, y1) is in section 5, and (x2, y2) are in opposite corners.
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2. (x1, y1), and (x2, y2) are on opposite sides of the square, such as directly
above and under.

3. (x1, y1) is in a corner and (x2, y2) is straight to one side of the square.

for situation 1, let’s assume wlog that x1, y1 ≤ 0, and that x2, y2 ≥ 1
3 . So,

the area added to the shape is given by:

A =
−x1

6
− y1

6
+

x2 − 1
3

6
+

y2 − 1
3

6

6A = x2 + y2 −
2

3
− x1 − y1

As mentioned, the distance between the two points is defined with:√
(x2 − x1)

2
+ (y2 − y1)

2
= 1

Let’s say we want to find the best location for (x2, y2), assuming (x1, y1) is
stationary. This can be done by expressing y1 in terms of the other variables:

1 =

√
(x2 − x1)

2
+ (y2 − y1)

2

1 = (x2 − x1)
2
+ (y2 − y1)

2

(y2 − y1)
2
= 1− (x2 − x2)

2

y2 − y1 =

√
1− (x2 − x1)

2

y2 = y1 +

√
1− (x2 − x1)

2

Plugging this into the previous area equation gives:

6A = x2 + y1 +

√
1− (x2 − x1)

2 − 2

3
− x1 − y1

6A = x2 +

√
1− (x2 − x1)

2 − 2

3
− x1

6A = x2 +
√
1− x2

1 + 2x1x2 − x2
2 −

2

3
− x1

To find the minima of this function, we’ll take the derivative of the area:
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d

dx2
(6A) = 1 +

2x1 − 2x2

2
√

1− (x2 − x1)2

d

dx2
(6A) = 1 +

x1 − x2√
1− (x2 − x1)2

When is d
dx2

(6A) equal to 0?

0 = 1− x1 − x2√
1− (x2 − x1)2

1 =
x1 − x2√

1− (x2 − x1)2√
1− (x2 − x1)2 = x1 − x2

1− (x2 − x1)
2 = (x1 − x2)

2

1 = 2 (x1 − x2)
2

1

4
= x1 − x2

This only takes a value of 0 outside it’s domain, implying that its minima
are only at the boundaries.

3 Taut curves

Okay, I might be losing it here just a touch, but I’m gonna let myself cook.
These are sloppy and casual notes that I’m making to collect my thoughts on
Mosers worm problem. First, here is an important definition:

Definition 5. A set of points (in euclidean 2D space) A accommodates a set
B when there is a set B′ such that B′ ⊆ A, and B′ is congruent to B.

Equivalently, a set of points A accommodates a set B when there is a set A′

such that B ⊆ A′, and A′ is congruent to A.
For these notes, A accommodates B will sometimes be notated with A ⊒ B.

If B does not accommodate A, then we write A ⊐ B

From here on out, I might be a little bit looser, and not worry so much about
the idea that S′ is appreciably different from S. Each shapes name might also
be loosely used to apply any translation and rotation of that shape.

Problem 4. What is the smallest convex shape that can accommodate any curve
of length 1?
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My goal here is to see what curves we don’t need to worry about. There’s
two prongs to this:

• Show that curve A is always accommodated when curve B is accommo-
dated.

• Show that when curves A and B are accommodated, curve C is also ac-
commodated.

To that end, we give these definitions:

Definition 6. Given a shape A, the convex hull of A will be noted [A].

Definition 7. The length of a curve X will be noted ℓX. The section of an
open curve X between two points a and b will be noted with Xb

a, so that the
length of an open curve between between two points a and b will be noted with
ℓXb

a.
For any set of points p1, p2 . . . , the polygonal chain that connects each of

them in order will be denoted ⟨p1, p2 . . . ⟩.

Definition 8. A unit-length curve X is taut if there does not exist a curve X ′

such that X ′ ⊐ X.

Immediately there are some lemmas we can form regarding taut curves with-
out any further context. For example, this is the lemma that inspired the choice
of the word “taut”.

Lemma 1. If a curve experiences any non-zero curvature at a point that is not
on the border of its convex hull, it is not taut.

Proof. Let X be a unit-length curve, and let x be a contiguous section of X
that does not touch the border of [X], except at two endpoints, a and b. Then
let X ′ be identical to X, except that x is replaced with a straight line from a
to b. The length of X ′ is necessarily less than 1, although X ′ has the same .
Finally, let X ′′ be the unit-length curve that includes all of X ′, but with an
added length at the end. X ′′ must have a convex hull that includes everything
in [X] and more.

9



Figure 1: Hopefully, this drawing explains why I chose the word “taut” to
describe this property. The curve on the left is “taut”, in the sense that it could
be stretched to coincide with the border of its convex hull, and that extra length
could be used to create a larger hull. The light grey area is the same between
the two shapes, but the dark grey area is added by using length more efficiently

Here’s another brief and straightforward lemma about taut curves.

Lemma 2. No self intersecting curves are taut.

Let’s start our effort to characterize taut curves with yet another definition

Definition 9. A Type 1 curve is a curve for which all points on the curve lie
on the boundary of its convex hull.

A Type 2 curve is a curve for which there is one single segment that crosses
the inside of the convex hull.

In general, a Type n curve is one with n distinct, discontinuous segments
along the boundary of its convex hull, and n − 1 distinct segments passing
through the interior of the convex hull

Figure 2: An example of a Type 1 and Type 2 curve.
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Type 1 and Type 2 curves can also be thought of in terms of path direction.
A path along a Type 1 curve moves entirely either clockwise or counterclockwise
across the edge of its convex hull. A path along a Type 2 curve starts moving
either clockwise or counterclockwise along the border, but then moves in the
opposite direction for a length.

Figure 3: In this diagram, the path along the Type 1 curve moves only clockwise
along the boundary of the convex hull. The path along the Type 2 curve begins
traveling counterclockwise, but then changes to traveling clockwise.

Here’s a brief lemma about Type n curves that will be useful in several
results coming up

Lemma 3. Let X be a taut curve, and let a and b be points on X such that Xb
a

consists only of internal points of [X]. Xb
a has zero curvature.

Proof. Suppose, for the sake of contradiction, that Xb
a does not have zero cur-

vature. Then ℓXb
a > ℓ⟨a, b⟩. Let X ′ be formed by replacing Xb

a in X with ⟨a, b⟩.
It is clear that ℓX ′ < X, and so X is accommodated by X ′, and is not taut.

I’ve only talked about Type 1 and Type 2 curves so far. Why hasn’t any
special attention been given to curves of other types? As it turns out, these
curves are never taut.

Theorem 1. There are no taut Type n curves, for n ≥ 3.

Proof. To force a contradiction, let X be such a curve. Let a, b, c, d, e, f , and
g be points on X, in that order, with the added requirements that:

• a, b, c, d, e, f , and g are all on the boundary of [X].

• a and g are the endpoints of X.

• d is the point furthest from ⟨a, g⟩,

• ⟨b, c⟩ is internal to the convex hull of X.
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• ⟨e, f⟩ is internal to the convex hull of X.

Here’s a drawing to explain.

For ease of upcoming calculations, let ⟨a, g⟩ lie on the x axis, with a existing
at 0, 0.

Let ϕ be the minimal distance from d to ⟨a, g⟩. Suppose:

ℓXf
b

2
≤ ϕ

In this case, define a′ and g′ to be these two points:

a′ =

(
0,−

ℓXf
b

2

)

g′ =

(
ℓ⟨a, g⟩,−

ℓXf
b

2

)
Then we can define X ′ to be the curve

X ′ = ⟨a′, a⟩ ∪Xb
a ∪ ⟨b, f⟩ ∪Xg

f ∪ ⟨g, g′⟩

This is given in the drawing below:
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Because a′ and g′ are both below d, the entirety of X must be inside X ′

Let’s limit a bit further which curves can be Type 1.

Lemma 4. Let X be a Type 1 taut curve with endpoints a and b. Every point
on X lies on a line perpendicular to ⟨a, b⟩.

Proof. Let X be a curve as described above, and let c be the point on X that
lies furthest from any line perpendicular to ⟨a, b⟩. without loss of generality,
assume c is closer to a than it is to b.

Let α be the line that includes the line segment ⟨a, b⟩, and let c′ be the point
on α closest to c. Let X ′ be a curve identical to X, except that the section
between c and a is replaced with a straight line between c and c′.

This situation is illustrated below:

It is clear that

ℓ⟨c, c′⟩ < ℓCa
c
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and therefore

ℓX ′ < ℓX

Therefore, X ′ has a length less than X, and so is a unit curve. The convex
hull of X ′ can accommodate X, but is larger. By definition, X is not taut.

Here is a theorem that helps to characterize Type 1 curves:

Theorem 2. A curve X with endpoints a and b is not accommodated by a
distinct Type 1 curve if and only if:

• All points on X are on its convex hull.

• Every point on X lies on a line perpendicular to a point on ⟨a, b⟩.

• There does not exist a set of points {c, d, e, f} such that:

– ⟨d, e⟩ is tangent to X.

– f is one of the end points of X.

– e is a point on X that is not an end point.

– ⟨c, d⟩ is perpendicular to ⟨f, c⟩ and ⟨d, e⟩
– ℓ⟨f, b⟩+ ℓ⟨c, f⟩+ ℓ⟨e, d⟩ ≤ ℓXe

f

Proof. The fist of these two requirements are implied by the Lemma above.
Therefore, this proof focuses on the second requirement

First, suppose that a set of points as described exists. Without loss of
generality, let f = a. As before, I’ll include a diagram to clarify what the
situation described in the lemma statement is.
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Let X ′ = ⟨c, a, b⟩ ∪ Xe
b ∪ ⟨e, d⟩. As evident from the diagram, the convex

hull of X ′ accommodates the convex hull of X. Next, consider the inequality
assumed earlier:

ℓ⟨a, b⟩+ ℓ⟨c, a⟩+ ℓ⟨e, d⟩ > ℓXe
a

ℓ⟨c, a, b⟩+ ℓ⟨e, d⟩ > ℓXe
a

ℓ⟨c, a, b⟩+ ℓXe
b + ℓ⟨e, d⟩ > ℓXe

a + ℓXe
b

ℓX ′ > ℓX

Therefore, X ′ accommodates X.
Next, suppose that such a set of points does not exist, but that X1 is a Type

1 curve such that [X1] ⊐ X. Let c and d be the endpoints of X1. An example
of what this might look like is shown below:

Next, let α be the line passing through c and d. let X2 be the shortest
curve with endpoints on α that accommodates X. X2 must consist of two lines
parallel to α, as well as a section of the boundary of [X], which may or may
not include ⟨a, b⟩. Let c′ and d′ be the endpoints of X2, and let e and f be the
points where X2 meets the convex hull of X, as shown below:
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Finally, the length of X2 can be reduced even further. Let d′′ and c′′ be
points on ⟨d′, e⟩ and ⟨c′, e⟩ that are both a distance ϕ away from d′ and c′, with
ϕ having the largest possible value without ⟨d′′, c′′⟩ intersecting the interior of
[X].

Let X3 be X2, without the lines from d′ to d′′ and from c′ to c′′. If f and
e are both endpoints of X, then X3 must contain the entirety of X. This is
impossible, as ℓX = 1, so either e or f is not an endpoint of X.

Instead, assume (for the sake of contradiction), that neither f nor e are
endpoints of X. This would require that at least one of the two points is not on
a line parallel to ⟨a, b⟩.

Therefore, {c′′, f, e, d′′} satisfies the requirements of the lemma.

The reason I set out this lemma is because I want to demonstrate that there
is a limit on the “height” of Type 1 curves. If ⟨a, b⟩ is very short, and X has
a point very distant from ⟨a, b⟩, it would be easy to find a way to maximize
ℓXe

a and minimize ℓ⟨a, c⟩ and ℓ⟨d, e⟩. In short, This can be thought of as a
generalized version of Lemma ??.
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It would be pretty cool to strengthen this theorem even further. Either way,
it’s time to start thinking about Type 2 curves.

Lemma 5. Let X be a taught Type 2 curve, and let a and d be the end points
of X. Let b and c be the endpoints of the section of X which are internal to the
convex hull of X. It it required that:

ℓ⟨b.c⟩ ≤ ℓ⟨a, c⟩

ℓ⟨b.c⟩ ≤ ℓ⟨b, d⟩

Proof. The locations of a though d are explained by this diagram:

Suppose for the sake of contradiction that ℓ⟨a.c⟩ > ℓ⟨b, c⟩. Define X ′ such
that

X ′ = Xa
b ∪ ⟨a, c⟩ ∪Xd

c

Because ℓ⟨a, c⟩ > ℓ⟨b, c⟩, ℓX ′ < ℓX = 1. Then let X ′′ be identical to X ′,
except that an extra bit is added to increase the area of the convex hull while
keeping ℓX ′′ ≤ 1. By definition, X is not taut.

By symmetry, X is also not taut if ℓ⟨b.d⟩ > ℓ⟨b, c⟩

The non-internal sections of a Type 2 curve behave something like Type 1
curves themselves. For example, consider the following Lemma:

Lemma 6. Let X be a taut Type 2 curve with endpoints a and d, and let b and
c be the endpoints of the section of X that is internal to [X]. Let L1 be the line
passing through a and c, and let L2 be the line perpendicular to ⟨b, d⟩ that passes
through d. Then any point p on Xd

c must lie in the triangle bound by L1, L2,
and ⟨c, d⟩.

Proof. First, for clarity, a diagram of these lines is shown:
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First, if p is a point on Xd
c that is on the “wrong” side of L1, then c is an

internal point of [X]. This is not true by assumption.
The point p must be on the exterior of [X], by assumption, and so cannot

be on the wrong side of ⟨c, d⟩.
Finally, suppose for the sake of contradiction that p lies on the wrong side

of L2. Without loss of generality, let p specifically be the point furthest from
L2. Then let p′ be the point on the line containing b and d that is closest to p.
If X ′ = Xp

a

⋃
⟨p, p′⟩, then X ′ is shorter than X. Because ⟨p, p′⟩ is perpendicular

to ⟨p′, d⟩, p′ must also be further from L2 than any other point in X. Therefore,
X ′ accommodates X, giving a contradiction.

This lemma comes with a few charming corollaries:

Corollary 1. Let X be a Type 2 curve with endpoints a and d, and let b and c
be the endpoints of the section of X that is internal to [X]. Let L2 be the line
perpendicular to ⟨b, d⟩ that passes through d. If p and q are points on Xd

c such
that ℓXd

q < ℓXd
p , then q is not further from L2 than p is.

Corollary 2. Let X be a Type 2 curve with endpoints a and d, and let b and c
be the endpoints of the section of X that is internal to [X]. The angles formed
by ⟨b, d, c⟩ and ⟨c, a, b⟩ are acute.

Finally, we can make a lemma effectively characterizing taut Type 2 curves.

Lemma 7. Let X be a taught Type 2 curve, and let a and d be the end points
of X. Let b and c be the endpoints of the section of X which are internal to
the convex hull of X. Let a′ be the point that is co-linear to a and c, such that
⟨a, a′, b⟩ is a right triangle. Similarly, let d′ be the point that is co-linear to b
and d, such that ⟨c, d′, d⟩ is a right triangle. This is shown in the illustration
below.
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If X is taught, then:

• ℓ⟨b.c⟩ ≤ ℓ⟨a, c⟩

• ℓ⟨b.c⟩ ≤ ℓ⟨b, d⟩

• Every point on X between c and d lies in the triangle bounded by L1, L2,
and ⟨c, d⟩

• Every point on X between a and b lies in the triangle bounded by L3, L4,
and ⟨a, b⟩

• If p and q are points on X between c and d, with q closer to d, then q is
closer to L2.

• If p and q are points on X between b and a, with q closer to a, then q is
closer to L4.

4 Convex hulls of multiple curves

The focus of this section is to expand our understanding of convex hulls of sets
of taught curves. While discussing convex hulls of curves, it will be useful to
clarify something that went unstated in the previous section:

Definition 10. When I refer to a curve, I actually mean the congruence class
to a specific curve. The term “curve” refers only to a particular shape, and not
a position.

When I wish to refer to a curve in a particular position, I’ll mention an
instance of a curve. If an instance of a curve is translated, rotated, or flipped,
it becomes a different instance of that curve.

As a useful convention, curves will be named in capital letters, while their
instances are named in lowercase letters.
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Figure 4: Three instances of S, labeled s1, s2, and s3

My plan is to spend this section establishing some useful lemmas about the
convex hulls of multiple curves. The nature of this problem requires that we
seek to minimize the size of a convex hull, so we give a definition relating to
this:

Definition 11. Given a set of curves {A,B, . . . } = C, define [C] to be the set
of convex hulls of unions of instances of A,B, . . . .

Let X be a convex hull in [C]. We say a X is minimal is it has the smallest
possible area of all elements of [C] convex hulls. The set of minimal convex hulls
in [C] will be denoted with [C]−.

For convenience, we order [C] by area, so that it is a weakly ordered set. We
use X ≲ Y to indicate that X is smaller than or equal in size to Y . By this
convention, [C]− is the set of minimal elements of [C].

For a basic lemma we may use:

Lemma 8. Let Ω = {A,B,C, . . . } be a set of curves, and let ω = {a, b, c, . . . }
be a set of their instances. Let X be the convex hull of the union of ω, such that
X ∈ [Ω]′. If there is an instance of A inside X that does not touch its boundary,
then X ∈ [Ω/A]−.

Proof. Let a′ be the instance of A that is internal to X but does not touch its
boundary, let ω′ = {a′, b, c, . . . }, and let X ′ be the convex hull of the union of
ω′.

It can be immediately seen by definition that ω′ ∈ Ω, and therefore that
X ′ ∈ [Ω]. Because X is a minimal element of [Ω], X ≲ X ′. X ′ contains no
points outside the boundary of X, and so X ≮ X ′.

Therefore, X ′ has the same area as X. This implies that X is X ′.
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In order to produce the next lemma. we give a special definition:

Definition 12. LetX and Y be two convex shapes, and let x and y be instances
of those shapes. We say that x and y are partially intersecting if there exists a
linear translation of x, called x′, such that [y ⋓ x′] is a strict subset of [y ⋓ x′]

If two convex shapes are intersecting, but no such linear translation exists,
we say those shapes are fully intersecting.

Lemma 9. If x and y are two fully intersecting convex shapes, then their bound-
aries intersect at three or more points.

Lemma 10. Let Ω be a set of curves, and let X ∈ [Ω]−1 be a minimal covering
set. If A and B are curves in Ω, then X contains fully intersecting instances of
X and Y

Proof. TO BE PROVEN

This comes with a charming little corollary

Corollary 3. If X is a minimal cover for a set of unit length curves, no two
points in X have a distance of more than 1 between them.

Proof. TO BE PROVEN

let’s set up some definitions of specific curves here, so we have some toys to
play with (in a manner of speaking):
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Name Description Name justification Illustration
P3 The set of 3-link polygonal

chains
P for Polygon

Q The subset of P3 with clockwise
non-acute angles

Q for quadrilateral

T The subset of P3 with clockwise
right angles

T for Trapezoid

R The subset of T with equal sized
first and last links

R for Rectangle

Rw The element of R with middle
link of length w

w for width

S A special name for R 1
3

S for Square

P2 The set of 2-link polygonal
chains

P for Polygon

O The subset of P2 with a right an-
gle

O for Orthogonal

V The subset of P2 with equal
sized links

The letter V looks
like an angle

Vθ The element of V with angle θ α is used for angles
Ω A special name for Vπ

2
Ω resembles a cor-
ner

E A special name for V 2π
3

E for Equilateral
triangle

A The set of unit length circular
arcs

A for arc

Ar The unit length arc of a circle of
radius r

r for radius

H A special name for A 1
π

H for Hemicircle

L The unit line L for line

Here’s a fun little graph to illustrate which of these are subsets of the others.
The charming hand-drawn arrows indicate set inclusion.
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By technicality, L is included in many of these sets, even when no arrow is
drawn.

5 proxy Accommodated Curves

In a previous section, I limited the space of curves worth considering by defining
taughtness.

Definition 13. a curve X is proxy accommodated by a set of curves Ξ if X is
accommodated by every shape in [Ξ].

My initial goal was to hopefully find a finite set of taut curves that proxy
accommodate all other taut curves, and then to find the smallest set that con-
tains all curves in that finite set. This goal seems reasonable at first, as it is
much easier to find [Ξ]− when Ξ is a finite set of curves as opposed to an infinite
one. However, as we will see, this goal is impossible, although there’s a lot to
be learned in trying to show this.
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First, to illustrate that it is possible to find the minimal size for covering
shapes for certain finite numbers of curves, let’s give a few examples.

Lemma 11. All elements of [S,L]− are congruent to a quadrilateral defined
with: 〈(

1

3
, 0

)
,

(
a,

1

3

)
,

(
0,

1

3

)
, (b, 0) ,

(
1

3
, 0

)〉
Where b < 0, a > 1

3 , and a− b = 2
√
2

3 .

Proof. First, assume that the square is located on the points (0, 0), (0, 1
3 ), (

1
3 , 0),

and ( 13 ,
1
3 ). Let the line have endpoints A and B, so that ℓ⟨A,B⟩ = 1. Note

that the line between A and B must pass through the square.

Let X be the convex hull of these points. A potential instance of X is shown
in the illustration below:
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X can be deconstructed into the central square and multiple triangles:

Let A = (ax, ay), and let B = (bx, by). Additionally, let f(x) be the distance
of x to the interval [0, 1

3 ], so that

f(x) =


−x x ≤ 0

0 0 ≤ x ≤ 1
3

x− 1
3

1
3 ≤ x

To give an example of how this could be useful, consider the triangle formed
by Ax. Using the standard formula for area of a triangle, we get 1

2 · 1
3 · f(Ax)
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Then, the full area of X would be given by:

1

9
+
∑
i

i

6

Where i is an element of {Ax, Ay, Bx, By}. There is also the limitation that:

1 = ℓ⟨A,B⟩

1 =

√
(Ax −Bx)

2
+ (Ay −By)

2

1 = (Ax −Bx)
2
+ (Ay −By)

2

The lines y = 0, y = 1
3 , x = 0, and x = 1

3 , which define the sides of the
square, also divide the plane into 9 distinct sub-regions. Those are numbered
as illustrated below:

Square 4.jpg
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〈(
a,

1

3

)
, (b, 0)

〉
=

√
(a− b)2 +

(
1

3

)2

1 =

√
(a− b)2 +

1

9

1 = (a− b)2 +
1

9
8

9
= (a− b)2

2
√
2

3
= a− b

6 eliminating type 2 curves

So far, the previous sections have each had to do with results I have already
proven. At the time that I write this, the subject of this section is not yet
proven. Therefore, what follows is a hypothesis, rather than a lemma, theorem,
or statement.

Hypothesis 1. For any Type 2 curve X, there exists a set of Type 1 curves
that proxy accommodates X.

This would be a lovely result to find, although it’s easier stated than proven.
Let’s start with a simpler hypothesis. Maybe we can use that as a stepping
stone.

Hypothesis 2. The curve Z is proxy accommodated by a set of Type 1 curves.

To explore this, we may start by drawing the closest curve we can to Z. For
convenience, let’s regard all curves as having length 3, rather than length 1.
We’ll start with the instance of Z = ⟨Z1, Z2, Z3, Z4⟩, where the points Z1, Z2,
Z3, and Z4 are corners. For now, we’ll set it such that:

Z1 = (0, 0)

Z2 = (
2
√
5

5
,
−
√
5

5
)

Z3 = (
3
√
5

5
,

√
5

5
)

Z4 = (
√
5, 0)
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a natural first instinct would be to create the Type 1 curve that most closely
resembles this. We can start by placing a few lines on top of the Z curve, with
the chain ⟨Z1, Z3, Z4⟩.

The purple curve here only has length 1 + /sqrt2. Because we are allowing
curves to have length 3, we may increase the purple curve’s length by 2 −

√
2.

It would be wise to increase its length by the maximum possible value, and to
extend it in the direction that brings the convex hull of the purple line closest

to the point ( 2
√
5

5 , −
√
5

5 ). Let P be this point.

In order to get closest to accommodating
(

2
√
5

5 , −
√
5

5

)
, P needs to be as

close as possible to the line between
(

2
√
5

5 , −
√
5

5

)
and the endpoint of the purple

curve. That line is given by:
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y − −
√
5

5
=

√
5
5√

5− 2
√
5

5

(
x− 2

√
5

5

)

y =
1

5− 2

(
x− 2

√
5

5

)
−

√
5

5

y =
1

3
x− 2

√
5

15
− 3

√
5

15

y =
1

3
x− 5

√
5

15

y =
1

3
x−

√
5

3

The point P must be a distance of 2−
√
2 from the origin, and must lie on

the line y = −3x. If P = (Px, Py), then:

Py = −3Px

and

P 2
x + P 2

y = (2−
√
2)2

P 2
x + (−3Px)

2 = (2−
√
2)2

P 2
x + 9P 2

x = (4− 4
√
2 + 2)

10P 2
x = 6− 4

√
2

P 2
x =

6− 4
√
2

10

Px =

√
3− 2

√
2√

5

For convenience and brevity, let u =

√
3−2

√
2√

5
. Therefore, P = (u,−3u).

Let’s add this point to the purple curve. In total, let the purple curve be called
λ, such that:

λ =

〈
P, (0, 0),

(
3
√
5

5
,

√
5

5

)
,
(√

5, 0
)〉

Here λ is shown in purple, with the interior shaded:
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If another instance of a curve is added to this plane, that could cause Z to
be accommodated. Moving forward, I’ll pretend I’m trying my best to avoid
accommodating Z, until I show that it’s ultimately not possible. Of course,

anything that would cause the point
(

2
√
5

5 , −
√
5

5

)
to be included is a dead zone.

I’ll illustrate that area in blue now.

There are other areas where the curve Z might be located that allow for it
to be accommodated by other curves on the plane. for the next few steps, I’ll
keep the curve λ stationary, while I move the specific points in Z around. For
example, Z1 might be placed at the point P , while Z2 lies on the boundary of
[x]. This is illustrated here:
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Finding the exact location of Z3 and Z4 requires knowing the slope of the
line from (u,−3u) to

(√
5, 0
)
. This slope is given by:

w =
3u√
5− u

If (a, b) is Z1, and the first edge of Z is at angle c, then the locations of the
points in Z are:

Z1 (a, b)
Z2 (a+ cos c, b+ sin c)
Z3 (a+ cos c− sin c, b+ cos c+ sin c)
Z4 (a+ 2 cos c− sin c, b+ cos c+ 2 sin c)

In this case, a = u and b = −3u. Therefore, the points in Z are:

Z1 (u,−3u)
Z2 (u+ cos c,−3u+ sin c)
Z3 (u+ cos c− sin c,−3u+ cos c+ sin c)
Z4 (u+ 2 cos c− sin c,−3u+ cos c+ 2 sin c)

To find the point whose inclusion would accommodate the last two of these
points, we find the line from the origin to the third point, then from (

√
5, 0) to

the last point. The first of these lines is defined by:

y =
−3u+ cos c+ sin c

u+ cos c− sin c
x

And the second of these lines is defined by:
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y =
3u− cos c− 2 sin c√

5− (u+ 2 cos c− sin c)

(
x−

√
5
)

Since the slope of the first segment of Z is w, the angle c is equal to tan−1 w.
These two lines are shown here in red:

if the intersection of these two lines is accommodated, then the curve Z is
as well. The intersection of these two lines can be found by setting them equal
to each other:

−3u+ cos c+ sin c

u+ cos c− sin c
x =

3u− cos c− 2 sin c√
5− (u+ 2 cos c− sin c)

(
x−

√
5
)

3u− cos c− sin c

u+ cos c− sin c
x =

−3u+ cos c+ 2 sin c√
5− u− 2 cos c+ sin c

(
x−

√
5
)

√
5− u− 2 cos c+ sin c

−3u+ cos c+ 2 sin c
· 3u− cos c− sin c

u+ cos c− sin c
=

(
x−

√
5
)

x√
5− u− 2 cos c+ sin c

−3u+ cos c+ 2 sin c
· 3u− cos c− sin c

u+ cos c− sin c
= 1−

√
5

x

A great deal of rearranging transforms the left-hand side of this equation:
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−3u
(√

5− u− 2 cos c+ sin c
)
+ cos c

(√
5− u− 2 cos c+ sin c

)
+ sin c

(√
5− u− 2 cos c+ sin c

)
u (3u− cos c− 2 sin c) + cos c (3u− cos c− 2 sin c)− sin c (3u− cos c− 2 sin c)

=
3u2 − 3

√
5u+

(√
5− 4u

)
sin c+ sin2 c+

(√
5 + 5u

)
cos c− 2 cos2 c− sin c cos c

3u2 − 5u sin c+ 2 sin2 c+ 2u cos c− cos2 c− sin c cos c

=
3u2 − 3

√
5u+

(√
5− 4u

)
sin c+ sin2 c+

(√
5 + 5u

)
cos c− 2

(
1− sin2c

)
− sin c cos c

3u2 − 5u sin c+ 2 sin2 c+ 2u cos c− (1− sin2c)− sin c cos c

=
3u2 − 3

√
5u− 2 + 2sin2c+

(√
5− 4u

)
sin c+ sin2 c+

(√
5 + 5u

)
cos c− sin c cos c

3u2 − 5u sin c+ 22c+ 2u cos c− 1 + sin2c− sin c cos c

=
3u2 − 3

√
5u− 2 +

(√
5− 4u

)
sin c+ 3 sin2 c+

(√
5 + 5u

)
cos c− sin c cos c

3u2 − 1− 5u sin c+ 3 sin2 c+ 2u cos c− sin c cos c

=
3u2 − 1− 5u sin c+ 3 sin2 c+ 2u cos c− sin c cos c− 3

√
5u− 1 +

(√
5 + u

)
sin c+

(√
5 + 3u

)
cos c

3u2 − 1− 5u sin c+ 3 sin2 c+ 2u cos c− sin c cos c

= 1 +
−3

√
5u− 1 +

(√
5 + u

)
sin c+

(√
5 + 3u

)
cos c

3u2 − 1− 5u sin c+ 3 sin2 c+ 2u cos c− sin c cos c

This is then inserted back into the previous equation:

1 +
−3

√
5u− 1 +

(√
5 + u

)
sin c+

(√
5 + 3u

)
cos c

3u2 − 1− 5u sin c+ 3 sin2 c+ 2u cos c− sin c cos c
= 1−

√
5

x

1− 3u2 + 5u sin c− 3 sin2 c− 2u cos c+ sin c cos c

−3
√
5u− 1 +

(√
5 + u

)
sin c+

(√
5 + 3u

)
cos c

=
x√
5

1− 3u2 + 5u sin c− 3 sin2 c− 2u cos c+ sin c cos c

−3u− 1√
5
+
(
1 + u√

5

)
sin c+

(
1 + 3u√

5

)
cos c

= x

It’s not pretty, but that is the x value at the intersection of those lines. As a
reminder, c = tan−1 w. Anything that accommodates that point therefore also
accommodates Z. We now have an even larger blue zone:
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In fact, this point was located by assuming c = tan−1 w, but c could be any
angle in the interval [tan−1 w, π

2 ]. Including all these points gives an even more
expansive area that an additional point cannot be placed in:

Next, let’s try moving the Z curve to have Z1 on the line from the origin
to (u,−3u). Let r be a number between 0 and 1 so that Z1 = (ru,−3ru) the
distance from the. The rest of the points in Z can be found by finding the angle
of Z’s first edge. Let α, β, and γ be the angles shown below:

34



The distance between (u,−3u) and (ru,−3ru) is given by:

ℓ⟨(u,−3u), (ru,−3ru)⟩ =
√

(−3u+ 3ru)
2
+ (u− ru)

2

=
√

9u2 − 18ru2 + 9r2u2 + u2 − 2ru2 + r2u2

= u
√
9− 18r + 9r2 + 1− 2r + r2

= u
√
10r2 − 20r + 10

= u
√
10 (r2 − 2r + 1)

= u

√
10 (r − 1)

2

= u (r − 1)
√
10

The slope of the line from (0, 0) to (u,−3u) is -3, and therefore its angle is
tan−1(−3). The slope of the line from (u,−3u) to (0,

√
5) is w, and therefore

its angle is tan−1(w). In total therefore, α = tan−1(w) − tan−1(−3). At this
point now, we can use the law of sines to find

sinβ

u (r − 1)
√
10

=
sinα

1

sinβ = u (r − 1)
√
10 sinα

β = sin−1
(
u (r − 1)

√
10 sinα

)
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Therefore, γ can be found as well:

γ = 2π − α− β

= 2π − α− sin−1
(
u (r − 1)

√
10 sinα

)

Finally, the angle c of the line from Z1 to Z2 is given by:

c = tan−1(−3)− 2π + α+ sin−1
(
u (r − 1)

√
10 sinα

)
For simplicity, this angle is coterminal with:

c = tan−1(w) + sin−1
(
u (r − 1)

√
10 sinα

)
the lines from λ to the points Z1 and Z2 are then given by:

y =
−3ru+ cos c+ sin c

ru+ cos c− sin c
x

y =
−3ru+ cos c+ 2 sin c

ru+ 2 cos c− sin c−
√
5

(
x−

√
5
)

This is shown below:

As before, These are set equal to each other in order to find the x coordinate
of the intersection:

−3ru+ cos c+ sin c

ru+ cos c− sin c
x =

−3ru+ cos c+ 2 sin c

ru+ 2 cos c− sin c−
√
5

(
x−

√
5
)

Again, we work towards solving for x:
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ru+ 2 cos c− sin c−
√
5

−3ru+ cos c+ 2 sin c

−3ru+ cos c+ sin c

ru+ cos c− sin c
=

(
x−

√
5
)

x

The left hand side of this equation expands and simplifies to:

−3r2u2 − 5ru cos c+ 4ru sin c+ 3
√
5ru+ 2 cos2 c−

√
5 cos c+ cos c sin c− sin2 c−

√
5 sin c

−3r2u2 + 5ru sin c− 2ru cos c+ cos2 c+ sin c cos c− 2 sin2 c

By subtracting the denominator from the numerator, this becomes:

1 +
−3ru cos c− ru sin c+ 3

√
5ru+ cos2 c−

√
5 cos c+ sin2 c−

√
5 sin c

−3r2u2 + 5ru sin c− 2ru cos c+ cos2 c+ sin c cos c− 2 sin2 c

And finally, therefore:

−3ru cos c− ru sin c+ 3
√
5ru+ cos2 c−

√
5 cos c+ sin2 c−

√
5 sin c

−3r2u2 + 5ru sin c− 2ru cos c+ cos2 c+ sin c cos c− 2 sin2 c
= −

√
5

x
√
5

3r2u2 − 5ru sin c+ 2ru cos c− cos2 c− sin c cos c+ 2 sin2 c

−3ru cos c− ru sin c+ 3
√
5ru+ cos2 c−

√
5 cos c+ sin2 c−

√
5 sin c

= x

Including all these points grants an even larger blue region:

Although there is a large amount of work that can still be done to limit the
area, I’ll set that down for the time being. I’ve got a second plan for how this
can be approached, which hopefully will be less grueling. I might write more
here later!
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6.1 second attempt

First and foremost, we’re going back to considering curves to have a length of 1.
I don’t know why I thought changing the length of curves to 3 would simplify
things. Here’s the first piece of inspiration that leads to this new approach:

Lemma 12. The largest circle that can be accommodated by the convex hull of
a single unit-length curve has a radius of 1

π+2 .

Proof. TO BE PROVED

For brevity, let’s call this curve M . This circle might not seem especially
large, but when compared with the unit length circle (radius = 1

2π ) or the circle
circumscribed inside S (radius = 1

6 ), this is a worthwhile improvement.
In any minimal convex hull with M and L, L must pass through the entirety

of M . Without loss of generality, place a circle of radius 1
π+2 centred at the

origin, called m. Allow a line of unit length to pass through it, and rotate the
entire shape until L has slope 0 and is located above the x-axis.

Precisely defining the convex hull of these two curves is cumbersome, but
doable. First, the location of L can be uniquely determined by its left point.
Define this point at (a, b). For convenience, let r be 1

π+2 . The central circle can
be defined with

y2 + x2 = r2

The derivative is then given by:

2yy′ + 2x = 0

y′ = −x

y

Let (x1, y1) be the point on the upper half of the circle whose tangent line
passes through (a, b). This gives:
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y′ =
∆y

∆x
−x1

y1
=

y1 − b

x1 − a

−x2
1 + ax1 = y21 − by1

by1 + ax1 = y21 + x2
1

by1 + ax1 = r2

y1 =
r2 − ax1

b

Because this point is located on the upper half of the circle, we may assume
y1 =

√
r2 − x2

1, and therefore:

√
r2 − x2

1 =
r2 − ax1

b

r2 − x2
1 =

r4 − 2ar2x1 + a2x2
1

b2

b2r2 − b2x2
1 = r4 − 2ar2x1 + a2x2

1

0 = r4 − 2ar2x1 + a2x2
1 + b2x2

1 − b2r2

0 =
(
a2 + b2

)
x2
1 − 2ar2x1 +

(
r4 − b2r2

)
This can be solved with the quadratic formula:

x1 =
2ar2 ±

√
(−2ar2)

2 − 4 (a2 + b2) (r4 − b2r2)

2 (a2 + b2)

x1 =
2ar2 ±

√
4a2r4 − 4 (a2r4 − a2b2r2 + b2r4 − b4r2)

2 (a2 + b2)

x1 =
ar2 ±

√
a2r4 − a2r4 + a2b2r2 − b2r4 + b4r2

a2 + b2

x1 = r
ar ± b

√
a2 + b2 − r2

a2 + b2

Because (a, b) is located above the x-axis, we will use the positive version of
this expression. We may repeat this process to find the other points:
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x1 = r ar+b
√
a2+b2−r2

a2+b2 y1 =
√

r2 − d21
x2 = r ar−b

√
a2+b2−r2

a2+b2 y2 = −
√
r2 − d22

x3 = r
(a+1)r+b

√
(a+1)2+b2−r2

(a+1)2+b2 y3 = −
√
r2 − d23

x4 = r
(a+1)r−b

√
(a+1)2+b2−r2

(a+1)2+b2 y4 =
√

r2 − d24

Using these points and the slopes associated with them, the four lines out-
lining the convex hull are:

y1 = − x1√
r2−x2

1

(x− a) + b x ∈ [a, x1]

y2 = x2√
r2−x2

2

(x− a) + b x ∈ [a, x2]

y3 = x3√
r2−x2

3

(x− a− 1) + b x ∈ [x3, a+ 1]

y4 = − x4√
r2−x2

4

(x− a− 1) + b x ∈ [x4, a+ 1]

An example of this is shown below:

As mentioned, we assume without loss of generality that the line here is lo-
cated entirely above the x-axis and that it passes entirely through m. Therefore,
the location of (a, b) is limited to this blue rectangle:

by Corollary 3, the distance from (a, b) to the furthest point of the circle is
1.

The point (a, b) has a distance from the origin of
√
a2 + b2. Therefore,

wherever (a, b) is located, it must satisfy the inequality
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√
a2 + b2 + r ≤ 1

This inequality intersects y = r where x = −
√
1− 2r, resulting in a small

chip off the available area for (a, b). Applying the same principle to (a + 1, b)
gives a slightly smaller blue area:

We also wish to eliminate all points in this blue region that result in a convex
hull that accommodates Z. For a start, let’s define the first point of Z, which
we call Z1, to be (a1, b1), and let the first edge of Z exist at an angle of c. Then
the points in Z are defined with:

Z1 (a1, b1)

Z2

(
a1 +

cos c
3 , b1 +

sin c
3

)
Z3

(
a1 +

cos c−sin c
3 , b1 +

cos c+sin c
3

)
Z4

(
a1 +

2 cos c−sin c
3 , b1 +

cos c+2 sin c
3

)
Let’s start by assuming that Z1 and Z2 lie on y2. This gives that:

a1 = a+ (x2 − a) p

b1 = b−
(
b+

√
r2 − x2

2

)
p

c = tan−1 x2√
r2 − x2

2

Where p is some value above 0. Z2 will lie on y2 as long as it’s x coordinate
is within the boundary set earlier. In other words:

a1 + cos c ≤ x2

a+ (x2 − a) p+ cos

(
tan−1 x2√

r2 − x2
2

)
≤ x2
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There are two other requirements for Z to be accommodated by this shape.
First, Z3 must be included. Because Z3 is exactly 1/3 units away from y2,
this only requires that Z3 is below y1. Second, Z4 must be included, which
requires both that Z4 lies above y3 and that Z4 lies below y4. All told, the four
requirements described so far are:

1. Z2 lies on y2

2. Z3 lies on or under y1

3. Z4 lies on or under y4

4. Z4 lies on or above y3

Naturally, the first of these places an upper bound on p. Because increas-
ing p slides Z4 in the direction of y2, and y3 has a positive slope, the fourth
requirement also places an upper bound on p. The third requirement places
a lower bound on p when the slope of y2 is greater than the slope of y4, but
experimentally, it is a weaker bound than the lower bound made by the second
requirement. For this reason, we’ll simply assume Z3 lies on y1, and calculate p
based on this.

The calculations involved here are fairly complicated, so

7 Walk on a Grid

Dr. Kovchegov has assured me that this is a bad approach to this problem, and
that this problem should be thought of analytically. However, Yevgeniy is not
the math police, and everyone who has attempted an analytical approach has
so far failed. So here’s a genuinely insane angle to approach this problem. If
you had a polygonal chain where each angle is a right angle and each link has
the same length, that would be kind of like a walking on a grid, right?

Problem 5. For any value of n, What is the smallest grid that can accommodate
any self-avoiding walk with n steps?

8 Analytical Approach
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