
TorusZero, a Torus playing Engine

Jules Johnson

May 19, 2025

1 Torus, the game

Torus is a board game inspired by Go, invented by mathematician Emma Joe
Anderson and physicist Erin Ewart in 2018. In the time since its invention,
Torus has gathered a small community of enthusiasts, and many aspects of its
strategy and theory have been explored and written about. However, despite
this enthusiasm, there have so far been no completed efforts to build a computer
program that plays Torus. With this in mind, the aim of this project is to
create a Torus engine that can compete with human players. To establish the
motivations and goals of this project, we first explain the exact rules of Torus.

Torus is played on a square board, on which alternating black and white
stones are placed on the intersections of a grid by each player, starting with
black. The player who is currently placing a stone is called the active player,
and the other player is called the passive player. Similarly, the active player’s
stones are called active stones, and likewise for the passive player. Although
any size of board is technically possible, Torus is almost always played on a 9x9
board. Each point on the board is labeled as in Go, with the columns named
after capital letters, and the rows named after numbers, so that each point can
be expressed with a letter and a number, such as B3 or I7.

There are two objectives that may be accomplished by placing a stone in
Torus. First and foremost, The active player wins the game by completely
surrounding any one of the passive players stones in all four cardinal directions.

Second, the active player may remove the passive players stones by flanking
them diagonally on two opposite sides. Any number of stones may be captured
like this, so long as they all lie on the same diagonal line as the stones capturing
them.

1

Figure 1: A game being won by black

Figure 2: If black places in the location pictured here, the white stone is
removed.

Figure 3: It is possible to remove multiple stones in a single row, or even in
multiple rows simultaneously.

2

Many moves in Torus are illegal. Of course, it is illegal to place a stone
where one is already present. Additionally, The active player may not place a
stone where it would be immediately removed by the passive player, or were it
would cause the passive player to win.

Figure 4: Examples of illegal moves

There are two exceptions to this rule. First, it is always legal to play a
move that wins the game, even in situations where the placed stone might be
captured, or that cause an apparent victory for the passive player.

Figure 5: This move causes black to win, because black is the active player,
even though it appears illegal.

Second, the active player may play a stone into a location where it would be
captured, if that move also removes the stone or stones that threaten the new
move.

3

Figure 6: This move is legal, because the white stone that threatens it is removed
first.

Finally, a move is never legal if it causes the board to enter a state that is
identical to any state it has had previously. This is similar to the “ko” rule
in Go, but it is more restrictive. In Go, it is illegal to return the board to
the position it had in the previous turn [2], but in Torus, it is illegal to return
the board to any previously held position. Therefore, this rule is referred to as
super-ko.

Finally, as the name of the game implies, Torus is played on a torroidal
board, in which the edges connect to their opposite sides. This means that
stones in the 9th row are adjacent to stones in the first row if they share a
column, and stones in the 9th column are adjacent to stones in the first column
if they share a row. For example, a board that looks like this:

Figure 7: A seemingly non-torroidal board.

Actually looks like this:

4

Figure 8: A ”wrapped around” version of the previous board. Here, the stone
placed on I9 is adjacent to A9, and the game would be over if black were to
play at I1

The two remaining rules are obscure and almost never applied. They are:

• The active player cannot capture a continuous line of 8 passive stones by
playing a single stone in the gap between them. A capture requires an
active stone currently being placed, and a distinct active stone that had
been placed previously.

• If there are no available legal moves for the active player, the passive player
wins.

The complete set of rules, as well of a starting exploration of the theory
and strategy is available on Anderson’s website at https://endless.ersoft.org/a-
beginners-guide-to-torus-the-board-game/.

2 Goals of the Project

Here, we will exact goals for this project that can inform future design decisions.
First, we hope to build an effective and powerful program that can outperform
human players. At present, the most experienced players in Torus are its cre-
ators, who nonetheless have only 5 years of experience. Torus is much newer
than Chess or Go, and so there has been very little time to develop strategy
or theory that can be compiled in literature. Because of this, even top human
players are likely playing at a level far bellow what is possible, and it should be
possible to create a machine that can outperform them.

5

Goal 1 To be able to outperform human players

Although Torus’s community has observed many strategies to be effective in
human play, it is not known with certainty with of these are found in optimal
play. Therefore, our second goal is to build this program without any pre-coded
sense of strategy. This will be similar to the approach used by AlphaGo Zero, a
Go playing program that is notable for not using any training data from human
games. This will allow for games played by our Torus Engine to be useful tools
for humans to analyze for new and ideal strategies.

Goal 2 To be built without training data from human games, and without spe-
cific hard-coded pieces of human-discovered strategy

Many Chess and Go engines are able to tell users the predicted effectiveness
of any given move, or the advantage to one player of any given board state, or
both. To give an example, chess.com uses the popular Chess engine Stockfish to
analyze their games [3], and can give move-by-move feedback on games played
through their website [4]. This is an invaluable tool for human players wishing
to improve their performance. Rather than simply outputting the expected best
move for a given position, we would like our program to be able to rank the
expected effectiveness of a move, for the benefit of human players who wish to
learn.

Goal 3 To be able to give insight on the effectiveness of a human player’s moves

Torus is a game with many symmetries. In a game of Go, each board state
is strategically equivalent to 8 board states: 4 that are rotations of the original
board (0◦, 90◦, 180◦, and 270◦), and an additional 4 that are rotations of the
original board, plus a mirroring over the x or y axis. These 8 symmetries can
also be thought of as the 8 possible combinations of mirroring over the x-axis,
the y-axis, and one of the boards diagonals. By contrast, each board state in
a game of Torus is equivalent to any board state made by shifting the entire
board up, down, left, or right any amount. Each boardstate in Torus is therefore
strategically equivalent not only to the 8 boardstates made by rotation and
reflection, but 81 board states made by translation, for a total of 8 · 81 = 648
board states that are strategically equivalent. Some of these equivalencies are
illustrated bellow.

6

Figure 9: Above: A board on the upper left, as well as all of the boards
strategically equivalent to it by rotation and reflection.
Below: Four of the boards strategically equivalent by translation. A red dot is
added for ease of reading

We wish for our program to give equivalent values to each of these equivalent
board states. Human players will often adjust their view of a board to an
equivalent transformation to get a better view of the boards structure, and it
would be unacceptable for our engine to view these differently.

Goal 4 To play equivalent moves in strategically equivalent boardstates

Of all the broad techniques for building a game playing engine, machine
learning and neural networks are perhaps the most exciting. They are not the
only tools available; Stockfish, the highest ranking chess engine, does not use
neural networks at all. Instead, it searches the game tree for moves that lead
to advantageous positions, according to a hand-crafted function that gives the
probability of each player winning based on the boardstate [5]. AlphaGo, the Go
engine developed by Google’s subsidiary DeepMind, does use a neural network,
but also uses a Monte-Carlo tree search, like Stockfish [6].

At present, The goal will be set to only use neural nets as opposed to game
tree searches, as this narrows the range of tasks to be performed immediately

7

to one that is useful to learn and practice. World chess champion José Raúl
Capablanca is reported to have once said, “I see only one move ahead, but it is
always the correct one” [1].

Goal 5 To avoid searching the game tree in lieu of rating moves by neural net

In total, our goals for our Torus program are :

1. To be able to outperform human players

2. To be built without training data from human games, and without specific
hard-coded pieces of human-discovered strategy

3. To be able to give insight on the effectiveness of a human player’s moves

4. To play equivalent moves in strategically equivalent boardstates

5. To avoid searching the game tree in lieu of rating moves by neural net
(this goal may be removed in future versions)

3 Plans for Construction

Due to requirement 3, it is necessary that this AI gives a rating to each move
and selects the best one, rather than giving a single move it predicts to be the
best. There are two apparent approaches to this goal:

1. Given any given space on the board, the program gives that spot a score.
The program then plays a move at the highest ranking spot.

2. Given any board state, the program outputs a score. The program then
selects the move for which the resulting board scores the highest.

Of these two, the first is likely easier to implement. The second option
would more easily allow for searching a game tree, so it might be more effective
in future projects or versions that drop that goal. However, scoring board states
in a way that is completely equivalent across all that boards symmetries is very
difficult, so for now, the AI will rank moves.

To make eliminate any possible differences in rankings of moves on boards
that are equivalent under translation, we may find a way of standardizing
boards. Given any board, and a space on that board to be ranked, we might first
shift the board so that the spot of interest is in the top left. Therefore, a move
can be scored equivalently regardless of what specific isomorphic boardstate is
used.

8

Figure 10: Here, two equivalent moves on different boards are moved to a single
move on a standardized board

We choose to create a program that scores specific moves, rather than board
states, as well as a program that can shift boards so that the move in question
is always located at the top left. Our first two classes, shown in pseudocode
with some of their functions are:

Board()

move_point_to_top_left(point):

for i in point’s x coordinate

shift board left

for i in point’s y coordinate

shift board up

MoveRater()

score_point(point)

The actual number of methods in each object shall be significantly greater
than those shown here. However, for brevity and ease of understanding, only
the most important are shown in the pseudocode in this paper, and any code
inside each method will be collapsed after its first appearance.

Our move rater also needs to be able to rank points equivalently across
boards that are flipped or rotated versions of each other. Rather than attempt
to find a single version of the board that is rated in all cases, MoveRater can
simply sum up its scores for all 8 equivalent forms of the board.

Board()

9

move_point_to_top_left(point)

rotate_board()

flip_board()

MoveRater()

score_point(board, point)

sum_scores(board, point):

total = 0

for i in {0,1,2,3}

total = total + score_point(board, point)

board.rotate_board()

board.flip_board

for i in {0,1,2,3}

total = total + score_point(board, point)

board.rotate_board()

return total

Because the MoveRater will rank moves using a neural net, it will need to
be able to intake a board as a one-dimentional array of numbers. The natural
idea is to create an array of numbers with length 81, in which an empty space
is represented by 0, a white piece is represented by 1, and a black space is
represented by -1. However, a ”good” or ”bad” move depends wildly on if the
person playing the move is placing a white or black stone, meaning that a neural
net that recieves this data would likely only be accurate half the time. The
obvious solution is to normalize the colors of the board, so that that active player
can always consider the black stones as their own. This is an improvement, but
there are still some problems with this approach.

First, there is no reason to include the top left space in this array, because
it can safely be assumed to be empty if the program wishes to play there.
Therefore, our array can be shrunk down to only 80 elements. More importantly,
it is not accurate to model a passive stone as the opposite of an active one. As
an example, in a board without any other stones in play, it is a very bad idea
to place a stone next to an opponents stone, as this leads to an inevitable
loss. However, it does not follow that it is a very good idea to place stones
immediately next to your own. Active and passive stones have to be considered
separately, and not merely as opposites of each other.

Because of this, we will represent the board with an array of 160 numbers,
consisting of 80 pairs representing each available spot on the board. Every point

10

on the board can be given a unique number n, ranging from 0 to 79. If a point
has a white stone, the array will have a 1 at position 2n, and a 0 at position
2n+ 1. If a point has a black stone, the array will have a 0 at position 2n, and
a 1 at position 2n+1. If a point is empty, both positions on the array will have
a 0.

Figure 11: The method by which a board is outputted to an array. The X
represents the top left point, which is assumed empty, and therefore is not
represented in the array.

Board()

move_point_to_top_left(point)

rotate_board()

flip_board()

Reverse_colors():

for spot in board:

if spot has a black stone:

give spot a white stone

if spot has a white stone:

give spot a black stone

output_board_as_string():

final_string = []

11

for spot in board:

if spot is not at the top left:

if spot has a black stone:

final_string.append([1, 0]

if spot has a white stone:

final_string.append([0, 1]

else:

final_string.append([0, 0]

MoveRater()

score_point(board, point)

sum_scores(board, point)

Of course, the most important function in this program is the method that
actually provides a score for a given point. In order for a point to be rated, the
board is first ”normalized” by shifting that point to A1. Each layer of neurons
will be multiplied by a matrix of numbers between -1 and 1, and each value in
the resulting neuron layer will have a bias added to it. To increase the flexibility
of our system, we will let the biases for each neuron be freely varied within a
certain range, rather than the usual approach of giving identical biases to each
neuron.

Although the standard neural net has multiple output neurons, ours will
have just one: the final score for a move. Because of this, in addition to the
weights and biases that are used ubiquitously in neural nets, our neural net will
also have a “power” associated with each neuron. Each neurons value will be
multiplied by its power, before it is fed into the matrix of weights that activate
the next layer of neurons. The justification for this is that we want a neural net
that is able to set priorities. For example, if there exists a neuron that activates
when a move is likely to cause a loss, this should have much higher priority than
a neuron that activates when a move is likely to allow a capture. Powers also
will be limited to fall within a pre-determined boundary, as with weights

Because of the decision to give each neuron a power, we will choose to
use the Sigmoid as our activation function, rather than ReLU, leaky ReLu,
or any other activation function. Using an activation function is required to
prevent linearization. However, using ReLU or any variation could cause neuron
values to grow out of control. Because of this, the use of powers will act as a
replacement for ReLU.

The previous three paragraphs have established a handful of plans for our
project that lie outside the standard strategies for developing Neural Nets. Jus-
tifications were given for these changes, but it’s completely possible that they’ll
prove to be unideal as the project is better understood. Thankfully, each of
these decisions can be easily reversed or turned off and on. This will allow for
experimentation later on.

In total, each non-entry neuron in our program will be created by multiplying
the previous layer of neurons by an array of weights, adding a bias, taking the

12

sigmoid of the result, and then multiplying by the power.
This construction allows for

CONVOLUTION_SETS = [....]

BIAS_RANGE = [min,max]

POWER_RANGE = [min,max]

Board()

move_point_to_top_left(point)

rotate_board()

flip_board()

Reverse_colors()

output_board_as_string()

MoveRater()

score_point(board, point):

board.move_point_to_top_left(point)

if active color is white:

board.flip_colors()

current_neurons = board.output_as_sting()

for size in convolution sets

current_neurons = matrix_multiplication(current_neurons,

appropriate weights)

for i in current_neurons:

i = i + appropriate bias

i = sigmoid(i)

i = appropriate_power * (i)

total = matrix_multiplication(current_neurons,

appropriate weights)

sum_scores(board, point)

The other half of this project is to create a method by which to train a
MoveRater that completes our first goal. There are a few obstacles that prevent
the normal method of neural net training. First, we do not have an appropriate
set of training data. Although Anderson and Ewart have kept a remarkably
well curated set of played games, this set is not nearly large enough to use as
the mountain of training data needed for machine learning. Additionally, to
use this data would go against goal 2, which states that we want to avoid using
human made strategies.

The second obstacle is that back propagation is impossible. Not only does
back propagation require training data, but it also requires that the network
has multiple outputs.

One solution is the one used by AlphaGo Zero and many other machine
learning projects. The program can learn by playing against itself. In particular,

13

there will be a single-elimination tournament of 32 MoveRaters, and the victors
will seed a follow-up tournament. After many repetitions of this tournament,
the victors will be much more powerful than they were when they started.

The top four from any tournament will be used as seeds for the next starting
bracket. Although there is no randomness built into the MoveRaters themselves,
the starting bracket itself ought to be scrambled. Because of this, the outcome
of a tournament is somewhat random, so allowing MoveRaters who have come
close to first to return in future tournaments seems like a good idea.

Of course, in order for MoveRaters to improve, we have to allow them to
mutate and change. Each MoveRater will then have a method that will ”salt”
itself by randomly adjusting its values a small amount. This necessitates an
extra global variable that can be adjusted, which we will call SALTCRAZINESS,
which can control how severely salting will affect a MoveRater.

It would also be a good idea to allow successful MoveRaters to repeat their
previous changes, in the hopes that a previous successful change could lead
to more success when repeated. This requires then that each MoveRater also
contains data on their parent.

CONVOLUTION_SETS = [....]

BIAS_RANGE = [min,max]

POWER_RANGE = [min,max]

SALT_CRAZINESS = 0.003

Board()

move_point_to_top_left(point)

rotate_board()

flip_board()

Reverse_colors()

output_board_as_string()

MoveRater()

score_point(board, point)

sum_scores(board, point)

normal_distribution(SALT_CRAZINESS):

return a normal distribution with mean 0 and standard deviation SALT_CRAZINESS

salt_self(severity):

for i in self.weights:

i = i + severity * normal_distribution()

for i in self.biases:

i = i + severity * size of BIAS_RANGE * normal_distribution()

14

for i in self.powers:

i = i + severity * size of POWER_RANGE * normal_distribution()

repeat_change(severity):

for i in self.weights:

i = i + severity*(i - i’s previous value)

for i in self.biases:

i = i + severity * size of BIAS_RANGE * (i - i’s previous value)

for i in self.powers:

i = i + severity * size of POWER_RANGE * (i - i’s previous value)

In order for a tournament to determine a winner between two move raters,
It must be able to keep track of a game. This requires a Gamestate object that
is able to map new moves onto a board, and update that board accordingly.
Although we already have a board object, we need an object that can keep
track of many boards in order to check for if a move violates ko. The board
object exists primarily to allow a board to be fed to a MoveRater.

Our Gamestate object will be set to only keep track of a game. This is useful,
because the board object shifts around often as it’s normalized. By contrast, a
Gamestate will be kept consistent. The functionality to find which MoveRater
would beat another will be part of the MoveRater class itself.

The gamestate class will have a method to check if moves are legal, as well
as one to apply moves to the board. This is straightforward, and does not
need to be explained in any great detail. The already explained rules of torus
are precise enough to determine for the reader what moves are legal, and what
effects playing a move has on the board.

CONVOLUTION_SETS = [...]

BIAS_RANGE = [min,max]

POWER_RANGE = [min,max]

SALT_CRAZINESS = 0.003

Board()

move_point_to_top_left(point)

rotate_board()

flip_board()

Reverse_colors()

output_board_as_string()

MoveRater()

15

score_point(board, point)

sum_scores(board, point)

normal_distribution(SALT_CRAZINESS)

salt_self(severity)

repeat_change(severity)

choose_move(gamestate):

best_move = [0,0]

record = -9999999999

for spot on gamestate.board:

if spot is a legal move:

if sum_scores(spot) > record

record = sum_scores(spot)

best_move = spot

return best_move

would_beat(otherMR):

Game = normal starting game

while True

if winning_move_exists():

if active color is black:

return True

else:

return False

else: if active color is black:

point = self.best_move(game’s current board)

game.apply_move(point)

else: if active color is white:

point = otherMR.best_move(game’s current board)

game.apply_move(point)

Gamestate()

legal_move(point)

apply_move(point)

winning_move_exists()

for point in the board:

if point would win the game:

return True

return False

16

Finally, we wish to build a Tournament object that can determine the most
effective of the MoveRaters put inside it. As mentioned, this will be done this via
a single elimination tournament, in which the top four performing MoveRaters
are chosen to seed the next tournament. Each successful MoveRater will be
allowed a certain number of child MoveRaters to appear in the next tournament,
which will be formed from a combination of salting the parent, and repeating
the parents previous changes.

In the produced bracket for a following tournament, it seems reasonable to
allow 4 children from each semi-finalist, 4 additional children for each finalist,
and 4 additional children for the winner. Because salting a MoveRater is totally
random, it is completely reasonable to include multiple children from a single
parent who have each been salted the same number of times.

This totals to exactly 28 children. One of the big pitfalls involved in machine
learning is that the process of optimizing a neural net might fall into a local
minimum, rather than an absolute maximum. Out of fear that we might fall into
a pattern of seeking a sub-optimal MoveRater, we will also include 4 randomly
generated move raters as well. This will also help to ensure that MoveRaters are
able to play effective games in a variety of situations, rather than just against
themselves.

CONVOLUTION_SETS = [...]

BIAS_RANGE = [min,max]

POWER_RANGE = [min,max]

SALT_CRAZINESS = 0.003

Board()

move_point_to_top_left(point)

rotate_board()

flip_board()

Reverse_colors()

output_board_as_string()

MoveRater()

score_point(board, point)

sum_scores(board, point)

normal_distribution(SALT_CRAZINESS)

salt_self(severity)

repeat_change(severity)

choose_move(gamestate)

would_beat(otherMR)

Gamestate()

legal_move(point)

apply_move(point)

winning_move_exists()

17

Tournament()

fill_brackets():

starting_bracket = current_bracket

While winner is undecided:

next_bracket = []

players = []

for MR in current_bracket:

add MR to players

if players has two MoveRaters in it:

Those two Move Raters play each other, and the

winner is added to next_bracket.

players = []

current_bracket = next_bracket

create_child_bracket():

child_bracket = []

for MR in semifinalists:

add MR to child_bracket

add MR.salt_self(1) to child_bracket

add MR.repeat_change(1) to child_bracket

add MR.repeat_change(1).salt_self(1) to child_bracket

add random MR to child_bracket

for MR in finalists:

add MR.salt_self(1) to child_bracket

add MR.salt_self(2) to child_bracket

add MR.repeat_change(1).salt_self(1) to child_bracket

add MR.repeat_change(1).salt_self(2) to child_bracket

for MR in winners:

add MR.repeat_change(1).salt_self(1) to child_bracket

add MR.repeat_change(2).salt_self(1) to child_bracket

add MR.repeat_change(3).salt_self(1) to child_bracket

add MR.salt_self(2) to child_bracket

Our main training program runs 100 tournaments like this, periodically out-
putting the final game to a txt file.

Of course, the pseudocode shown here is wildly simplified from the actual
implementation of code in the project. The code for the project is kept well
commented, so any confusion can be resolved there.

18

4 Results to the First Draft of Code

Unfortunately, the results of the first draft of this project have been mixed.
To start with the good news: There is now a Torus playing engine that plays
equivalent moves in strategically equivalent positions without using training
data or game trees. However, successes with the first and third goal are much
more mixed.

First, The rankings of moves is not especially useful. Many MoveRaters
are set up so that every value they produce is negative. It might be nice to
normalize a raters scores, so that the scores given line up between 0 and 100

However, the larger issue is that the Torus engine developed is not especially
effective. Although the engine as exists does seem to have a solid grasp of how
to capture, it doesn’t seem to understand much else. Regrettably, this means
that a lot more work will be required before this project can be used to inform
human play.

5 Possible Improvements for a Future Draft

It might be useful to switch from rating moves to rating boards. First, this
can still be used to rate the effectiveness of moves, by measuring how much it
improves the board state. But second, we have a suspicion that having more
stones on the board is better most of the time. This would be a good way to
make it easier for a neural net to realize this quicker.

Second, it might be nice to begin by training MoveRaters against programs
that, for example, only try to capture stones. Training MoveRaters against a
simple but broadly effective strategy might be a good way to quickly raise their
effectiveness to a good base level.

Third, it would likely be a good idea to relax our goal of avoiding game tree
searches. This goal is non-standard for Go and Chess engines, and dropping
could streamline the process greatly.

6 Version 0.1.2

6.1 changes

I’ve decided to start naming the specific versions of this program. With version
0.1.2, first and foremost, a small bug that sometimes viewed an illegal move as
legal has been removed. There was an edge case when a move might be played
that would be captured immediately, but that’s been removed.

More significantly, there is now a small amount of tree searching. MoveR-
aters will now play moves that will prevent a loss next turn, as well as auto-
matically play moves that guarantee a win the turn after next. This is done by
having the gamestate object give each MoveRater a list of moves to consider.

For the purposes of this project, a stone is in ”peril” if it has 3 stones of
the opposite color surrounding it, and no stones of the same color around it. A

19

stone is ”in danger” if it has 2 stones of the opposite color and at least 1 empty
space touching it, and a stone is ”threatened” if it has 1 stone of the opposite
color and at least 1 empty space touching it. These terms are not in common
use among players of Torus, but will be useful for this project in particular.

If the active player has a stone s that is in peril, there are only two ways
to avoid a loss on the opponents next turn. One is to place a stone at the
empty spot adjacent to s, although this can usually be undone by the opponent
next turn, and so is not ideal. The other option is to capture any of the stones
surrounding s, if possible. Because of this, checking to see if a stone in peril is
saveable is quick and easy.

Similarly, it is easy to find which moves lead to inescapable peril for the
opponent. The only possible moves that create peril in this way are the ones
that are played adjacent to passive stones that are in danger. As mentioned, it
is easy to confirm which of these moves lead to peril that cannot be escaped.
Therefore, games can be massively sped up by automating the game ending
process.

6.2 results

One of the biggest growing concerns for the project moving forward is speed.
Although the time required to make an individual move isn’t especially high, a
single game can easily contain dozens of moves, and each tournament consists of
31 games. Given that training includes hundreds of games of training, this can
take a very long time. This is exacerbated to a great degree in the cases where
the Torus engines in training play incredibly defensively. Human players rarely
play a game with more than 50 moves, and almost never reach 70. However,
around Tournament 50 in the training for this version, the length of games
ballooned to be nearly 300 moves long. Thankfully, by tournament 100, they’ve
shrunk back down to reasonable levels. However, it still would be worth it to
look into methods that can quicken the program in the future.

It is very nice to see move raters rush towards winning the game in situations
where victory is obvious to a human player. It would probably be worth it to
have the program completely enter a game-tree searching move once two stones
are directly adjacent and threatening each other. As before, understanding
game trees would benefit board-rating to a greater degree than move rating.
This is also likely to restrict the number of moves used in each game, which
would allow for quicker training.

From a strategy standpoint, the engine does seem to understand some of the
techniques used by humans. But moreover, it seems to have certain preferences
that humans don’t use. Human players usually follow the common wisdom that
the best moves are the ones placed two spaces to the side and one space above
or below (or vice versa) to an already existing stone. However, the MoveRaters
here seem to prefer playing their moves in small boxes, clustering moves together
along diagonal lines.

20

7 Version 0.1.3

7.1 changes

After the previous version, there was a strong desire to shorten the lengths of
games. Here are the changes made for the newest version

• First, the goal of avoiding gametrees has been abandoned. The program
now performs a depth first search for any move that provides a victory
within 5 turns.

• The MoveRaters no longer bother to rank every possible move in the first
two turns. Because every spot is identical, the engine now simply selects
A1 as the first move. For the second move, a smaller list of possible moves
is given to the engine, to account for the existence of symmetry.

• The lengths of convolutional neurons within each neural net is now in-
cluded when that neural net is printed for records. This is for convenience,
in case future versions want to upload a neural net of a different size.

7.2 results

Finally, the games between these engines are starting to resemble human play!
Stones are definitely placed more clustered together than they are in human
play. In order to test if this is better or worse than human strategies, it would
be necessary to create a function that plays an engine against a human player.
This will be the necessary next addition in future versions.

8 Version 0.2.1

Enough changes have been made to the previous version, it makes sense to call
this a minor update rather than just a patch! Here’s what’s new:

• MoveRaters are now able to play games with humans. The human can
enter a move, and if that move is valid (i.e. is a properly formatted location
on the board) and legal, that move is played. The human and machine
take turns, with the first turn being decided randomly. If the human ever
inputs an invalid/illegal move, they are prompted to enter another one.

• Ratings of any move can be normalized, placing the minimum possible
rating at 0, and the maximum possible rating at 100, and adjusting all
ratings in between to keep their original order. It does not bother doing
this while deciding on a move to play, but does do this to inform the
human player how effective a move is.

• The previous goal of avoiding game trees searches has been abandoned.
The engine is now able to perform a breadth-first search of game trees to
search for a move that can guarantee victory. However, this is incredibly
slow, and so is currently turned off.

21

• It is now possible to reuse a MoveRater developed in a previous training
session. This can be useful as a seed for further training sessions, to start
off with a partially effective neural net for further training.

• Methods have been put in place to re-size Neural nets, to have different
lengths of convolution layers, either by removing neurons (and their con-
nections), or by adding new ones, where appropriate. New neurons can
either have all values set to 0, or to a random value within the allowed
range.

While this update is exciting for all the big changes made, it does not repre-
sent any large increase in the engine’s effectiveness. There has been no further
training, and the tree searching is currently unusable. The next version will
hopefully optimize some of these problems away. In general, the current objec-
tive is to minimize the time used for every single function present. Some of the
ideas for this are:

• Having boards, rather than games, alter themselves. This will make ko
checking simpler in execution, and hopefully quicker as well.

• Giving the board object counters that keep track of how many black and
white stones are present. This also will likely speed up ko checking radi-
cally.

• Checking only every second board in a games history for ko violations.
Additionally, checking the first, second, third, and last boards is not re-
quired. This is due to the precise rules around ko, where all of these
boards are guaranteed not to cause ko problems. This is likely to be a
very small improvement if the previous change is made, but a small change
may accumulate to a significant one over time.

• Compiling is currently done with the stock Python interpreter, CPython.
Switching to another compiler, such as Pypy, might speed up the program.

• Tree searches currently check every legal move for a path that leads to
inevitable victory. It might be more effective to only consider certain
moves. For example, tree searches might only consider moves that are
horizontally, vertically, or diagonally adjacent to existing stones.

• As mentioned, this project uses the old-fashioned sigmoid function rather
than the newer, more popular, and faster ReLU. This was given justifi-
cation, but it might be reasonable to swap from one to the other in light
of everything that has been learned. This will create problems for the
function that places all move scores between 0 and 100, due to the fact
that the value inside any neuron is no longer limited to between -1 and 1.

• If the previous change is made, it would make sense to reconsider the
use of powers as well. As mentioned, the decision to use a multiplier for
each neuron was partially associated with the use of the sigmoid function.

22

Previously, it was argued that the min and max value can simply be set
to the same number to have no power in effect. It’s worth noting that
this number would likely be 1, as any other power value would have the
same effect, and cause complications to certain calculations. However,
this would not be maximally efficient in terms of calculation time! It
would be ideal not to waste time multiplying each neurons value by 1
while calculating an output for the neural net. Time would also be wasted
assigning a value of 1 to every element in the arrays of neuron powers in
each MoveRater. Therefore, it might be best to remove powers entirely,
or at least add a global variable that can act as a flag to turn them on
or off. Incidentally, turning off powers would also allow the function that
places all move scores between 0 and 100 to be simpler again.

• Although Python is famous for its automatic garbage cleanup, it might be
worth considering looking at garbage cleanup precisely. The tree searching
function has a tendency to sputter and stop at random intervals, which
might imply some sort of memory problem. Even if this is not a memory
problem in particular, this clearly indicates some sort of issue in need of
being resolved.

9 Version 0.2.2

The primary goal set out after the last version was to speed the program up
wherever possible. Because of this, this section will focus mostly on comparing
alternate methods of optimization against the previous implementations.

For example, we wish to compare the sigmoid function to ReLU in terms of
speed of execution. In addition to comparing sigmoid directly to ReLU, we can
also measure the speed of a linearization function that uses either the sigmoid
or ReLU based on an if-statement that accesses a global variable that acts as a
flag.

This test works by creating a list of 1000000 random numbers between -
5 and 5, and then applying the noted linearization function to each of these.
Below are the observed times for 10 trials with each of the possible linearization
functions.

sigmoid 3.24 3.35 3.31 3.32 3.48 3.38 3.36 3.23 3.24 3.21

ReLU 0.24 0.27 0.24 0.23 0.24 0.25 0.25 0.24 0.24 0.24

sigmoid w/ flag 3.64 3.55 3.88 3.58 4.09 3.59 3.70 3.65 3.83 3.60

ReLU w/ flag 0.35 0.35 0.35 0.35 0.35 0.39 0.34 0.37 0.44 0.59

23

Figure 12: A comparison of execution times for different linearization functions

ReLU is clearly much faster than the sigmoid function. But is this a worth-
wile change? Each time a move is rated, every non-input neuron within a
MoveRater has to be normalized. MoveRaters currently have 100 of such neu-
rons. MoveRaters have to consider at most 79 moves. Most games are over
within 100 moves, and games played by humans are usually over within 50
movs. If tree searching for game ends can be made to work better, games will
be shorter, but 100 is an okay ballpark estimation for the upper bound of the
length of a game for now. Each tournament includes 31 games. Therefore, the
number of times a neuron has to be linearized within a tournament is roughly

100 · 79 · 100 · 31 = 24, 490, 000

Assuming the average times found earlier, the sigmoid function takes about
81.1 seconds over the course of a tournament. By contrast, ReLU requires only
5.9 seconds to accomplish the same task. On one hand, this is a significant
improvement from the old version. On the other hand, this is only a fraction of
the time required for a tournament at present. A tournament presently takes
between 15 and 30 minutes to complete. Switching over to ReLU would be
worthwhile, but would not fix the problem.

How much time is saved by skipping the power calculations? It would most
likely be minor, but what are the exact time frames? Here is the structure of
this test:

• 100 games are created. For each game, a random number n between 0
and 40 is chosen, and n random moves are applied to that game.

• 100 random MoveRaters are generated.

• A timer is started.

• For each number i between 1 and 100, the ith MoveRater finds its highest
ranking move on the ith game. This is done first with the powers on using
sigmoid.

24

• The timer is stopped.

• The previous three steps are repeated with powers on using ReLU, powers
off using sigmoid, and powers off using ReLU

This test is performed 10 times, and the resulting times, in seconds, are
shown below:

powers on, sig 114.48 56.76 55.96 53.59 58.25 49.25 57.83 51.68 63.64 51.82

powers on, ReLU 51.79 52.31 51.52 49.91 53.90 46.20 53.78 47.80 61.09 47.75

powers off, sig 55.97 56.35 55.56 53.35 57.77 48.80 59.07 51.21 63.22 51.49

powers off, ReLU 51.60 51.92 50.98 49.40 53.38 44.89 53.07 47.20 58.04 47.40

As before, the averages are shown in this bar graph:

Figure 13: Another comparison of execution times

As expected, it seems that leaving powers off is faster than having them on.
Of course, one could run an analysis to find the statistical significance of these
numbers. However, this is only meant to be a quick check to confirm suspicions
about which option is faster. According to this data, removing powers and
switching to ReLU may result in a 10% increase in speed. As mentioned, games
of Torus last roughly 40 moves, and tournaments contain exactly 31 games.
This means that a tournament requires roughly 1240 moves, and so a 12 minute
tournament may be reduced to a 10.5 minute tournament.

Next, the overall structure of the Gamestate object is going to be rethought.
Presently, the ”board” in each Gamestate is simply a 2D array. However, for
some of the plans we have, I think it makes more sense to create a Boardstate
class, of which the Gamestate is a subclass. Then the history within a gamestate
can be an array of these boardstates, and can store a lot more information in
order to speed up Ko checks.

While this is being done, a general effort is being made to trim the fat from
the rest of the functions of this project. For example, the function that checks if
a move is suicidal was cut from an average runtime of 8.33 seconds per million

25

runs to 6.49 seconds. This is a remarkably small change in the grand scheme of
a full tounament, but its at least a little faster.

A ⊒ B

References

[1] Ross, Philip E. “THE EXPERT MIND.” Scientific American, vol. 295, no.
2, 2006, pp. 64–71. JSTOR, //www.jstor.org/stable/26068925. Accessed 2
June 2023.

[2] The Brittish Go Association “How to Play”
www.britgo.org/intro/intro2.html. Accessed 7 July 2023.

[3] chess.com “Chess Terms: Chess Engine” www.chess.com/terms/chess-
engine. Accessed 7 July 2023.

[4] chess.com “How are moves classified? What is a ‘Blunder’ or ‘Brilliant’
and etc?” support.chess.com/article/2965-how-are-moves-classified-what-is-
a-blunder-or-brilliant-and-etc. Accessed 7 July 2023.

[5] Mohammad Hamzah “Game Theory: How Stockfish Mastered Chess”
https://blogs.cornell.edu/info2040/2022/09/30/game-theory-how-stockfish-
mastered-chess/. Accessed 7 July 2023.

[6] Deepmind “AlphaGo” https://www.deepmind.com/research/highlighted-
research/alphago Accessed 7 July 2023.

26

